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I. LNTRODUCTION

We consider the problem of determining the probability density func-

tion of the output of an RC filter when the input is a binary random process.

Such problems have been around for forty or so years, and arose during that

time largely out of intrinsic interest in the development of the theory of

random orocesses. Their solutions and the methods used to solve them have

provided insight, and have led to many useful applications [1, 21. More

recently, filtered binary processes have received attention as theoretical

models of a single channel in a nerve membrane distorted by the low-pass

filtering action of recording equipment [5, 15]. Most previous work has focused

attention on the special case in which the binary input process is the random

telegraph signal (with exponentially distributed intervals), and for this case

results are available for the output density function as well as for related

quantities such as the interval statistics and level crossings of the output

[5, 9-11, 13, 14, 171. Few results have been obtained in the more difficult case

in which the intervals of the input are not exponentially distributed.

For independent and identically distributed intervals with arbitrary

statistics, McFadden [61 derived integral equations from which the output

densit; can be obtained. However, because of the complexity of these integral

equations, he was able to find a solution in only one special, non-trivial case.

Another case that has received considerable attention, but with limited success,

is that in which the binary process is the result of hard-limiting of a stationary

Gaussian noise with exponential correlation [4,7,91. In this case, the
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intervals of the binary-process are no longer statistically independent. Al-

though exact results are available for only one special ratio of time constants

[41, approximations have been obtained by use of the Fokker-Planck equa-

tion [9].

In this paper, attention will be confined to binary processes of the

type considered by NMcFadden; i.e. , each binary process will be assumed to

* be constructed from an equilibrium renewal process [3, 16] so that its intervals

will be independent of one another and of the state of the binary process at the

transition times. We will extend McFadden's work in several directions:

(i) by generalizing the binary input process to have different probability

density functions for the up and down intervals, (ii) by finding approximations

based upon the Fokker-Planck equation, (iii) by deriving new integral equa-

tions for the relevant density functions, (iv) by developing matrix and iterative

methods for solutions of the integral equations, and (v) by investigating trans-

formations of the integral equations into differential equations. Some numeri-

* cal results which compare the various approaches will be given.

The paper begins in the next section with a brief review of the system

model, the integral equations of McFadden, and a summary of known results.

Sec. III discusses the moments of the filtered process, and Sec. IV grives

approximations based upon the Fokker-Planck equation. In Sec. V, new

* integral equations are derived, and methods for their solution considered.

Transformation of the integral equations into differential equations is

examined in Sec. VI, numerical results are presented in Sec. VII, and the

final section summarizes and discusses the results.
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II. SYSTEM MODEL & KNOWN RESULTS

This section gives a brief summary of the system model and known

results, and also serves to define the various quantities that enter into the

analyses.

The system is governed by the differential equation

dy(t) 3y(t) = 3 x(t) , > 0 (I1)

J -1
where 3 is the RC filter time constant, x(t) 1 is the binary input

process and y(t), jy(t)j < I, is the filter output. We shall frequently use

~-i
T

A. The Binary Input Process. The binary process x(t) is characterized by

the time intervals between its transitions, which are taken to be independent

random variables. Further, the time intervals corresponding to the x(t) -1

state will be taken to be identically distributed with one probability density

function, while those corresponding to the x(t) - -i state to be identically

distributed with a different density. These densities and some quantities later

needed are

f 0 (t) = p.d.f. of x(t) -1 interval length (2a)

f (t) = p. d. f. of x(t) -1 interval length (2b)

0f tf (t) dt (2c)
0

F.(s) = £ (f.(t)} J ' f.(t dt (2d)
01So

(t) f.(t')dt' (2e)
t

4
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All of the f's are to be considered as being defined on [0, =], and to be zero

for negative arguments, L.L is the mean value of the up- or down interval,

F. (s) the Laplace transform of the interval density, and .i (t) the comple-1

ment of the interval probability distribution function. The quantities in

(2a)- (2e) will sometimes be written without subscripts in the symmetric case

in which f 0 (t)=f (t) f(t), ,' 0 =, l = , F0(s)=F (s)=F(s), and, 0 ()=i (t)=3(t).

B. The Output Process. The output process y(t) consists of segments of

rising and decaying exponentials, and consequently will have local minima and

maxima at the transition points of x(t). The probability density functions of

y(t) at these transition points enter into the analyses. At this point, it is

convenient to define six different probability density functions associated with

y(t), and these are

p 0 (y) = p. d. f. of y(t) at a minimum point (3a)

p1 (y) = p.d.f. of y(t) at a maximum point (3b)

p (y) p. d. f. of y(t) at a time picked at random during an

x(t) -l interval (3c)

Sp_(y) = p. d. f. of y(t) at a time picked at random during an

x(t) = +1 interval (3d)

p(y) unencumbered p.d.f. of y(t) at a time picked at random (3e)

p p(y) Fokker-Planck approximation to p(y) (3f)

All of the p's are zero outside the interval [-1, i - this will be tacitly

assumed throughout and will not be stated each time an expression for one of

the p's is given. Inthe symmetric case, we have p Or) pl(-y) and

p (Y Y).

. . ".,. ? . . .. .. , . . , . • . -- . . . , '-. ,. ..



Some elementary relations between p (y), p.(v) and p(y) are

p~(y) 0 1 4b

p.!y/ - 2'" 1- y) p(y) (b
0

0 1

p-(Y) ( 1 y) p(y) (4c)
2

Equations (4b) and (4c) foilow from a theorem on conditional expectation of

Mazo and Salz [8] which says that E [lry] = 0. Applying this to (1) gives

E[x(t) y(t)] = y(t) which,in turnimplies (4b) and (4c) (see the derivation in

[1II for a similar situation). From (4b) and (4c) it follows that

Uo0(1+y)p(y) l(1-y)p+(y) (4d)

which also can be obtained by equating the average number per second of the

upward and downward crossings of the level y.

C. The Basic Integral Equations. The basic integral equations relating the

interval densities and densities of the output process are, with T = 1/3,

I

pO(y) = T 1d p )f0 (T 1) y (5a)
yI

P1 (y) -= d p0 1)f( - (5b)

1

p (Y) T drPl 3,) (T,/ 1I+5 C
P-(y) 01-y) f + (5c)

Y

: ) d p0 ( ) (T 5K1- ) (5d)

- The precise mathematical conditions required are satisfied for the processes
considered here.

6" 7



Equations (5b) and kSd) were derived by McFadden (cf. (5) and (7) of [6])1, who

wrote them in a slightly different form, and are the result of considering the

output y(t) over a time interval during which x(t) = -1. Exactly following the

same steps for an x(t) = -I interval leads to (5a) and (5c). In the symmetric

case, McFadden changed the independent variable from y to t by means of

-t
y = I - 2e (6)

and, by Laplace transforming with respect to the new variable t, transformed

(5b) and (5d) into algebraic expressions which enabled him to obtain a solution

in one special case. To do the same type of transformation in connection with

(5a) and (5c) would require the slightly different change of variable

-Qt
y =- 2e-t (7)

D. Known Results. The only nontrivial cases in which exact results are known

are those of exponentially distributed intervals and McFadden's special case.

A brief summary of these follows.

- at
(i) Symmetric Case: f(t) ae , [10, 17]

* )= 1y2( 1

p,)- i ' " =  aT (8a)

pO(y) = (i - y) p(y) (8b)

where B(u,v) = -(u) -(v)/7(u+v) is the beta function.

* :7
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-a.t
(ii) Asymmetric Case: .(t) = a.e []

0 1

o0 i i
p~)=(l+y) (l-y)

2~y = ;a .a.T ~ 9a)
2 B (a0 =

0' 1

p0 (y) = p_(y) ; pl(y) = p (y) (9b)

(iii) Symmetric Case: McFadden Interval PDF [6]

-a~t 8t b-a-I
f~)=e (il-e )(lae (I ) : b > a Q 10a)

B(a, b-a)T

1-I + (b, a) - 1(1 (b, a)
-(Y) " 2 =//(b)- (a) (lOb)

3 (1 - v2

Sa-i b-i

PO 2a+b-y) (I Oc)
2 ~ - 1B(a,b)

Because of the (I - e term in f(t), McFadden's results hola only for the

special case that the input interval density is related to the filter time constant

through this term.

Ix(p,q) =X up-(I -u)q-1 du/B(p,q) is the incomplete beta function 112]
x J0

and , (z) = -'(z)/' (z) is the logarithmic derivative of the gamma function.
Our 'fal and' b are McFadden's "al" and 'bo-I.
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11. MONENTS

The rnoment. E [yn(t)] , n = 1, 2, ... can often be evaluated in situa-

tions of the present kind without first getting the density p(y) [7], In the

symmetric case, all of the odd moments are zero. In general, the moments

can be expressed in terms of the Laplace transforms of the interval densities,

F 0 (s) and F 1 (s), and the first two nonzero moments in the symmetric and

asymmetric cases are:

(i) Symmetric Case:

y 1 23 1 + F(S) (1 la)

-4 8 [ -2F(3) + 2F(2--) - F(2) F(22- )][l F(3')]

-i U [1 +F(1)][- F(2)1 F ) -(3B) - (l1b)

(ii) Asymmetric Case:

y + (llc)

0 1

2 4 [1 - F0 ()[1 -F ()y : i (0+l i-0(£ 1 (lid)

Equation (11a) is derived in the Appendix, and its generalization to (lId) is

also outlined there. A recursive method for obtaining all of the moments of

y(t) as well as all of the conditional moments E [yn(t)Ix(t) 1, has recentlv

been developed by A. Munford [19], and (lb) has been deduced from his

work. The n-th moment is a function of F 0 (k3) and F (k-) for
0 1

k = ,.. n-l; and becomes increasingly complicated as the order of the

moment increases. The noments are significantly more complicated in the

asymmetric case than in the symmetric case.

9



V. F~CKKER-PLANCK APPRCXL\L-TICNS

Aproximations to p(y) based upon a certain linearitv assumption can

be obtained bv use of the Fokker-Planck equation. The Fokker-Planck approx-

imations are, in fact, exact in the case that x(t) has exponentially distributed j
intervals [5, 101, and are close approximations when x(t) is hard-limited

Gaussian RC noise [7, 9] it will later be shown that the Fokker-Planck

approximation is also exact in the case of the McFadden interval density with

b = a + 1 and b = a 2 2. In some other cases, the approximations are accu-

rate to within a few percent. Also, the approximations provide starting points

fur iterative solutions to the integral equations, to be considered later. Our

use of the Fokker-Planck equation closely parallels that in [91

A. The Symmetric Case. The (extended) Fokker-Planck equation for p(y) is

readily shown to be [0, -i]12

d 2 - v2) p(y) A(y) p(v) 0 (12)dv 2

in which A(y) is defined as the limit of a conditional expectation as

1
A(y) lim -- E[y(t--1) - v(t) v(t)] (13)

:n genera], it is not known how to evaluate A(y). An assumption that has led

to an excellent approximation in one case [9] is that A(v) is approximately a 0

linear function of v, and, for that reason, we make the same assumption here.

Setting

10



A(y) - uy , u constant 14)

in (11) and solv-ing the ensuing equation then gives

Pp(Y) Y2 
(15

2u-1
2 B(u, u)

The subscripts "FP" on the density function are intended to emphasize the

fact that the density function is an approximation based upon the Fokker-

Planck equation, and not necessarily an exact result. The unknown constant

u can be found by evaluating y by two different ways (see (11a) and the

Appendix), and comes out to be

I - F I)u - _ _ _ _ _ _ _ _ _

It will later be shown in Sec. VI-A (see (43) et seq.) that an exact

expression for A(y) in terms of p(y) and p0 (y) is

A ~ r) o y ' (- ( y )
A - ( P - 0 ' (17)

2 2 p.. (y)

which provides a way of comparing the assumption (14) with the exact --Ov)

when p(y) and p0(y) are known.

B. The Asymmetric Case. The Fokker-Planck approximation in the asvrn-

metric case follows in much the same way as in the symmetric case, and so

the details will not be given. The results are

II



I-

PI-() (l+y) (l-y) (13)
2 u - V 1 B(u,v)

w here

i
L0

V(19

U a (20))2 (. , K -

02 1 0 1

2 u-v (u-v)2

U v (u -v)2

and, the analog of (17) is

My) - P0 (y) " p 1 
(Y )

- (22)
2 0 + 1 )p(y)

Equation (lid) is an alternate expression for y which can be used in (20) to

:rive the value of the parameter u in terms of the Laplace transforms of the

interval densities.

12
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V, LNTEGRAL EQUATICN APPROAC5

A. Some New Integral Equations. In this section, we explore ways of further

using the basic integral equations (5a) - (5d). Equations (5a) and (5b) can be

used in the integrands of one another to give integral equations in either p 0 (y)

or pI(y) only; viz.,

1

o - / d- f( T: 1 (2--a)
y +0

PI(y) T+ 1  1 dr p 1 fT M +- (23b)

By interchanging orders of integration, these can also be written as

1

p0(y) f K0(y,-)p 0 (7)d- (24a)
-i

-I
, p(Y) J , K(y, ) p,("d- (24b)

:-l

where the kernels are
1

7 z K (Y -T "If- (5a

max(, )

2rin(y, -

KTY' y ___ :zT Z v (2 5b)

Eqs. (24a) and (24b) were derived independently by R. FitzHugh in a private
correspondence.

13
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The forms of (24a) and (24b) lend themselves more directly to numerical tech-

niques than do (2 3a) and (23b). A matrix technique for solving them will be

discussed later in this section.

A second way of using the set of basic integral equations is that of

inverting (5c) and (5d) to express p0(y) and y as integrals of p(y) and

1

Po(y) 1 y ho-- d ) - (26a)

y

T y

P1 (y) = I-y d- h 1 T - (26b)

in which

h.(t) £1 F; i 0 (27)
1 1 - F.(s) ; 0

Equation (26a) can be obtained by using the change of variable (7) in (5a) and

L (5c), and then Laplace transforming both with respect to the new variable. The

resulting two equations can be solved for the transform of p0 (y) in terms of the

transform of p (y). Inversion then leads to (2 6a). Equation (26b) can be ob-

tained in the same way by starting with (Sb) and (3d) and using the change of

variable (6).

As with f.(t), whenever h.(t) is used, it will be tacitly assumed to be

zero for negative t. When (26a) and (26b) are substituted into the integrands of

(5c) and (5d), the results are two equations containing only p (y) and pj(y).

Employing (4b) and (4 c), the first of these gives an equation involving only the

unencumbered density p(y): i.e.,

14
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4y

T2  h(T ZiAE+ (28)
i-v

which can also be written as

p (y) K K(y, p( d -  (29)-1

where

K(y,') - (1")T 2  min(y,

i -1 -I

Any of (23a), 23b) or (29) can be solved by the matrix method of the next sub-

section.

The h(t) functions will usually be more complicated than the interval

densities, however, there are some cases in which the h(t) are particularly

simple. The Laplace transform of the McFadden interval density (10a) is

-(b) 7 (sT +a) (31)F(s) =
* (a) 7(sT b)

and the Laplace transform of the ganma interval density

4n+i n -at

f(t) =  na t n 0, 1,... (32)

is

nI-

Cases in which these lead to simple forms for h(t) are:

15
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(i) McFadden, b a+ 1

h(t) = a3 6(t) (34a)

(ii) McFadden, b = a +2

(a+l) 8t
Sh(t) a8 a(a+ 1) e (34b),

(iii) McFadden, b = a + 3

2 aS (a+l)(a+2) -3(a+1) 3t/2 ( 2a

h(t) =  ea + sin 3a +oa- 1 Bt/Z) (34c)
3 a 2 + 6 a - 1

(iv) Gamma, n = 0
I

h(t) = a 5 (t) (34d)

(v) Gamma, n = 1

2 -2at
h(t) = a e (34e)

(vi) Gamma, n = 2

2 3at/2
h(t) = (2a //) e sin(,v-at/2) (34f)

* For either the McFadden density with b - a an integer, or the gamma density,
4

-£ h(t): is, in general, the ratio of two polynomials in s. An explicit form

for h(t) as the sum of complex exponentials can be written in the case of the

* gamma density for arbitrary n.

B. Solution by a Matrix Method. Any of (26a), (26b) or (29) can be solved by

numerical matrix method [181. Consider (29) which, by approximating the

integral by a sum, can be written in the form

I'.

r .
.

*t ~ *

. .. . . .: . . --. " - : . -- . " . . ..*. - .: .



*~( K--------.-.------ - (y (y -.. .. -35

N

where yk I - + (Zk-l)/N. This is a homogeneous set of N simultaneous

linear equations in the p(y, i =1 ... N and can be solved by solving the

associated matrix eigenvalue problem

(K- \I)P = 0 (36)

Here P is an N xl column vector with components p(y.), I is the identity

matrix, K is the NXN matrix with element 2K(y.,y .)/N and % denotes an

eigenvalue. The desired solution is the one for which X is nearest to one

under the normalization

N
2 N p(yi) = 1 (37)N i

The eigenvalue problem can be solved by standard techniques from the theory

of linear algebra [181.

C. Solution by Iteration. The integral equations lend themselves to solution

by iteration in several ways depending upon which of the equations one chooses

to work with. Such a choice will be influenced, in part, by the kernels of the

equations, which are simplest in the basic equations (5a)-(5d) and somewhat

more complicated in (24a),(24b), (26a), (26b) and (29). We will describe in

detail only one of these possible iteration schemes - that which can be applied

to the basic equations.

17
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With the idea of iteration in mind, (5a) and (5b) will be written as [18]

1

Po, nI = I+-in + 13saV
y

y

Y p() fl(T Za (38b)

Here, poo(y) and plo(y) represent initial starting estimates of pO(y) and

P (y) respectively. One way of getting these initial estimates is by using the

Fokker-Planck approximation pp(y) and (4b) and (4c) in the integrands of

(26a) and (26b); viz.,

1( LO+1 )T +
P0 0 (y) = (l+y) Jyd (l - n) pFp( ) h0T ;1-- y (39a)

01 1 fd-c(IpT h T (39b)2 (1 -, y)P ~lo' y )' 2(l-y) d(- PP 1* l----y) 3

These then lead to p 0 1 (y) and pII(y) by (38a) and (38b), and the results can

again be used back in the integrands of (38a) and (38b) to give p 0 (y) and

pl 2 (y), etc. The general procedure is illustrated in Fig. 1, which also shows

the final step of getting an estimate ;(y) of p(y) at the culmination of the

iteration. It is reasonable to suppose that (see L18]
(y) : lira P (V) (40a)

n :

pl(y) lir pin(y) (40b

4rg-



and that the convergence will be rapid if the initial guess p (y) is good.

The results of some calculations using the iteration procedure will be given

in Sec. V!. As will later be seen, a single iteration is sufficient in some

cases.

X '12.y > \

Fig. 1. Illustration of iteration procedure. The numbers above
the arrows are the equations to be used in going from
one step to the next, and p(y) is the final estimate of p(y).

It is also possible to iterate one of (24a), (24b) or (29). An example will

later be given in which ply) will be estimated by the single iteration of (29); i.e.,

p(y) J ) FP d- (41a)

which is the same as

Z

(y) d T (41 b)
0 +  1 I ) ( 1 1 /  "

and it will be seen that the iteration is good to three significant figures. Such

accuracy is possible because the Fokker-Planck approximation is excellent in

many cases. 1
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VI. DIFFERENTIAL EQUATION APPROACH

In certain cases, the integral equations (5a)- (5d) can be turned into

differential equations, and this approach is the main concern of this section.

First, however, we consider some general relations, which can be deduced by

differentiation, for arbitrary interval densities.

A. Some Differential Formulas. Multiplying through by (l+y), and differ-

entiating with respect to y, (5c) leads to

d9 [(1 y) p_(y)] p0(y) - p1 (y) (42a)

In a similar way, (5d) yields

Q 1 j(i -y) p+(y)] p 0 (y) - p 1 (y) (42bl

Adding and making use of (4b) and (4c) then gives

0 1 d -y 2 )p(y)] - (43)
2y y( )P]=PO(y) -p I(y) 3

Equation (43), when combined with (12) leads directly to (17) and (22). This

derivation of (43) illustrates the general method of turning the integral formulas

into differential formulas, and will be used in essentially the same way in the

remainder of this section.

* B. Intervals with Gamma Densities. Aside from (43), it does not appear pos-

sible to use the differential equation approach without specifying the interval

statistics of the input process, so we here take f 0(t) and f (t) to be Gamma

distributed with densities given by (32). Then it can be shown by repeated

20
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differentiation that (5a) and (5b) lead to the differential equations

+ PP (y)l ? 1 (y) (44a) S

n+I£ PI(y) = aI P0 (Y) (44b)
.4

where £ and £, are linear differential operators defined by

CL

a1 d d d y -a£ (.) = (1 - v) (l-y) .. * ( 1y
dgdy l - --'a (I-y) (. (45a)

n times

a0 d d d i+
£+.) Y (+) 0 "' d(I y (I+Y) ) (45b)

dy ~ dy d

n times

Operating with £ on (44a) and £. on (44b), it follows that

£ - 0 (y) - ( a 1 )nl p0 (y) 0 (46a)

££_ p1 (y) - (- 0 )1  pI(y) 0 (46b)

These are linear differential equations of order 2n+2. When n 0, we have

the case of exponentially distributed intervals, and it is straightforward to

show that solving (46a) and (46b) along with (43) leads to (9a) and (9b). The

next simplest case is that of n= 1, to which we now turn.
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C. The Case f(t) a te For the sake of simplicity, we consider only

the symmetric case. Equation (46a) for p 0 (y) then becomes

'2 f4) ' " ' )2 ,i
-v2)2 0  -2( 2 - 5 yr-Y)(l - v ? )o [(6'> -24a- 25)y 28( -2)-(2--8-5)]p 0

Ki

(3-2a)[(2a- 6o a 3y 32.p - jl-~4-+] 0(7'
0 0

This equation is somewhat formidable, and we have not been successful in find-

ing general solutions. However, the form of the a-, :rmptotic behavior of n(y)

around the endpoints y I can be determined from it. Setting x = I - y,

1 - = 2 - x, d/dy = -d/dx in (47), and assuming a solution of the form x

leads to the indicial equation

2I

v(v-1)[{- (a- 1)] = 0 (48)

I
Consequently, a power series solution to (47) will have the leading terms

(y) - c c 2 (l-y)c (l-y) + c 4 (l-y) 2 (l-y) around y= (4 0 a)

Similarly

-0v ~~ (--)-c3{~ "lc i -l --
S I _( - c (I )( (1-0 around v=-I (49b)

The c's are constants (which could depend upon '.

-or a = 1, (47) can be once integrated and leads to the somewhat

simpler third order equation
4

y2 2,, v2 , (v2/ , 1vo cns.2 I (0
( - Y 2 p 0  2 ( 2 - y ) ( i - 2 P 0 ' ( 3 2 )l- y 'D Q -0 0 (0

It is possible to get a differential equation for the unencumbered density
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?(y) in the following way. Using (34e) along with (4b) in (26a) leads to the

integral formula

p (y) 2- (1-y) '-  d- (1--)(I -I)2 (

y

When this is substituted back into the right-hand side of (43) for p(y) and
.I

? (Y) p(-y), the resulting expression contains only the unknown p(v). The

integrals can be eliminated by differentiation, which then gives the third order

differential equation for p(y)

2 rp- 2y2 , 2 

0 =(1-y )-p" -2(5-2a)y(- o -2[(3a' 1- ll 2)v - 3---Z 4]p'

2- 2--2m( P (52)

As was done above for p 0 (y), the form of the asymptotic behavior of p(y) in

the vicinity of y 1 can be determined from this differential equation, and

is

p(y)- k I k2 (l-y V -k 3 (1-y- 0 (-v around v==i 153)

From this, it is apparent that p(y) as y 1 if a < 1, and that p(y)

remains finite for all y if :> 1.

In the special case ' 12, (45) can be once integrated, and doing so

results is

d [(l-v-) - v 3) constant (a /2) (54a)
dy 2

The constant can be evaluated in ferrns of v by integrating the differential

equation over [-1, I]. The result of this is the differential equation

13
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d 2 2
'] ) - - 3)o =( D, 3) 54b

and appropriate boundary conditions for the solution are that po'v be svm-

metric and integrate to one.

Just how appropriate boundary conditions can be found from the integral

equations, in general, is not obvious. For the gamma density with n 1, it is

straightforward to show from the basic integral equations that ,1) = i J 0.

But, the differential equation for p0(v) is of fourth order. For the gamma

density with arbitrary n, it can be shown that p 0 (yl and its first n deriva-

tives must vanish at n = I; however, since the corresponding differential

equation is of order 2n-2, an additional n-i conditions must be snecified

'one of these is that the density integrate to one).

Vi. EXAMPLES

The results of some calculations will be given in this section in the two

cases of intervals with McFadden's density and intervals with a gamma density

with n= 1. Only symmetric cases will be considered. Since exact results are

known for the McFadden interval density, it will be possible to use them to see

just how accurate the approximate techniques of Sec. IV are. First, though, we

consider cases in which the Fokker-Planck 'approximation' s, in fact, exact.

A. McFadden Interval PDF, b a - I and b a -2. The McFadden interval

density (10a degenerates to the exponential density when b =a -I, and it is

known that the Fokker-Planck density is then exact. What is somewhat

surnrising is that the Fokker-Planck "approximation vfy' is also exact

when b~a2. From (Ob), when b a-2,

24 0
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a a -

and then using this' and (31) in (lo) leads to u=a. Consequently,

( a-I

P (') 2a- I (56)
2~ Ba, a)

The Fokker-Planck result comes from (15), and it can be verified that (lOb) for

?(y) is the same as (5o) by first changing variables of integration in one of the

incomplete beta functions (by letting u I -u) in (lOb), and then integrating by

parts twice.

B. McFadden Interval PDF, b a 3. In this case,

- -I (37)

a a 1 at2

3a~a+-1)(a + 2)

3a 10a 6

and, again changing variables of integration in one of the incomplete beta func-

tions in 1l0b), and integration by parts three times gives

Y (2ab-1) (I-V2) a - I (3a+ .;"ay-)59p(y) : 2 2a 10

(3a 2 6a- 2 )2  B(a, a)

This is not of the same form as o (Y).

For the special case = 1 and a =1, we have = 11/6, u= 1S/11, and

The probability density p(y) can be expressed as a polynomial in v when-

ever b a +-m and m is an integer - then m integrations by part -ra rec-ired

to get the polynomial form from (l0b).
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-t -2t -3t
f(t) =3e -6e + 3e (6Oa)

a(t) = 3e- t -3e - 2 t -t e -R(6Ob)

h(t) 3,/2et sin(VZt) (60c)

-1/19

p(Y= (1-y 2 ) (60d)FP 2 1/9B(18/19, 18/19)

and the exact p(y) is

p(y) = y2 )  (60e)

Table I compares values of p(y), pFP(y) and p(y), the result of a single

iteration by means of (41b). As can be seen from the table, even though

p.p(y) - as y- 1, (y) approaches the correct value. Also, ;(y) is

accurate to three significant figures.

C. Gamma Interval PDF, n 1. For the gamma interval density with nl,

(32), (33) and (16) give

2 ___+2a = I + ; = aT (61)

The Fokker-Planck approximation is especially simple when u= 1; i.e., when

(I t,/17)/4. Then zp(y)= 1/2, and (39a) gives

4
In this case, (60e) and (Ilb) each result in v 81/385.
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Table I. McFadden Interval PDF, a 1, b :4, ? 1.
Comparison of Approximate and
Exact Densities

Y P(Y) p(y) P p (Y)

0 .4773 .4775 .4836

.2 .4800 .4801 .4847

.4 .4882 .4883 .4881

.6 .5018 .5018 .4951

.8 .5209 .5209 .5103

.9 . 5325 .5324 . 5278

.99 .5441 .5440 .5943

.999 .5453 .5452 .6707

1 .5455 .5454

[(I+y)/2]1 -I1 (l+y)/2 2 (
POOI (2a-1) 1)1; ( ( / (62

This p 0 0 (y) was used to do one step of the iteration as outlined in Fig. 1, and

the results are plotted in Fig. 2. Also shown on the figure are the results of

an 8Y8 matrix approximation to the integral equation for p 0 (y). As the curves

show, both p0 0 (y) and p0 1 
(y) agree well with the matrix approximation except

in the vicinity of y -1. In this region, only p0 1 (y) has the correct asymp-

totic behavior as predicted by (48a). Also, p(y) has the correct asymptotic

form as given by (52).

The conditional moment A(y) was computed from (17) using p 0 1 (Y) and

'(y) for p 0 (y) and p(y) respectively, and is shown in Fig. 3. As the figure
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shows, A(y) is nearly linear except in the .-icinity of the endpoints. By

(43) and the asymptotic form (4 a), it can be shown that o (y)/p() 4 as

y-, -1, and consequently from (17) that

2 as y (63)

S-which is consistent with the behavior depicted in Fig. 3. Similar computations

were repeated for the case a = 1/2, and are also shown in Fig. 3.

Fig. 4 contains curves of p 0 1 (y) for 2 = 1/2, 1, 3 and 7 which

were obtained by the same iteration procedure as just used for , = (1 + )/4.

These curves agreed to within a few percent with the results of an 8 < 8 matrix

approximation except in the case a = 1/2. Because p 0 (y) tends to bunch up

around y = - 1 for small :, a matrix approximation with more points, or

with nonuniform spacing, becomes necessary. In contrast, iteration was

found to work well even for the smaller values of a.

D. McFadden Interval PDF, a = 6, b =41. In all of the previous cases, the

Fokker-Planck approximations were themselves good approximations to p(y).

A case in which this is not so is that of the example used by McFadden in which

a =6, b =41 and 3 = 1. In this case,

34

= = 1. 99520... (64)n +6 " "'
n=0

U 35 1.47214... (65)4% - 70
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Fig. 5 gives a comparison of p(y) and p (y), and Fig. 6 shows the actual

and Fokker-Planck approximation to -A(y)/ 2. The conditional moment is

far from being approximately linear, and pI(y) is not a good approxima-

tion to p(y). Fig. 5 also shows some values of p(y) which were computed

from (41b) and are listed in Table II. The agreement of this single iteration

with the true p(y) is excellent except in the region where p(y) is rapidly

changing.

In doing the calculations to get p(y), it was found easiest to evaluate

the terms in the integrand of (41b) from

(-i z) 1- b l) k(I b-l-k(
k=0

in which a and b are integers, and

- t 1 -3t -I B(sT, 2u+l) sF(s)
POO Te £. B(sT, u) l-F(s)j (67)

where F(s) is given by (31). Eq. (66) is the result of repeated integration

by parts when (10a) is used in the definition of Z (t), and (67) follows by

recognizing that (39a) is a convolution when the change of variable (7) is

employed for y and the change -1 +2e in the variable of integration.

The inversion in (67) was done along the imaginary axis by means of the

FFT.

2
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Table II. McFadden Interval PDF, a =6, b =41, a 1.
Comparison of Approximate and Exact
Densities

0 .3012 .5012 .6297

2 .5221 .5221 .177

.4 .5955 53956 .3800

o.7206 .7297 .3101

.8 -4321 .3933 .3888

VII. SUMMARY AND CONCLUSIONS

* The problem of calculating the probability density function of the output

of an RC filter driven by a class of binary random inputs has been studied in

detail. Some new integral equations were derived, and methods for their

solution were developed. Also, transformations of the integral equations into

differential equations were investigated. Exact and approximate results were

compared in several examples.

The matrix solution technique was seen to work well for the cases in

which the densities being computed were smoothly varying, but requires a

* finer grid with more points to yield any erratic behavior. iteration was seen

to work well, with only a single iteration required when the initial estimate

was good. In the last example of the McFadden interval PDF with a =6

b = 41, even though the initial estimate was not particularly good, the single

iteration was within 10%o of the correct value. This example and the first

example are felt to establish the veracity of the iteration process. The

Fokker-Planck approximation was seen to not only be a good estimate for

30



starting the iteration, but, in many cases, to be in itself an excellent

approximation to the desired p(y).

All in all, the differential equation approach was disappointing since

it had been hoped that it would lead to new closed form solutions. The differ-

ential equations are not only complicated in themselves, but correct boundary

conditions for their solutions are not apparent in the general case. Never-

theless some useful asymptotic information was obtained.

4

4
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(y._ Gamma interval POF, m

0.-

0.5 0.5

. 0.5 .O

Fig. 3. Conditional moment of Fokker-Planck equation
for gamma interval PDF with n 1, = (1 + I-7)/4
and a= 1/2.
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3amma interval POF, n:
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.0 - 0.5 0 135 .

Fig. 4. The density p0 1 (y) for a gamma interval
PDF with n = I and . as a parameter.
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Fig. 5. Output probability density functions for McFadden interval
PDFwith a=6, b=41 and - 1.
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Fig. 6. Exact and approximate conditional moments for a
McFadden interval PDF with a =6, b =41 and 2
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APPENDX. CALCULATION OF v

This aDpendix shows how y" is determined from the system equation

for arbitrary interval statistics of the binary input process. We will give the

derivation only for the symmetric case, and rely heavily upon some results in

Cox's book [3] on renewal theory.

The mean square of y(t) can be obtained by integrating the power

spectral density S (f). Relating S (f) to the spectral density S (f) of they y x

inDut binary process then results in

-2 [ S (f)
x dx

y 2 2 2 (Al)

S (f) can be further expressed in terms of the generating function of thex

number of renewals of an equilibrium renewal process as

i.

* S (t) R (7)(e e -.
x x

G (-iii, -1) + G (ir, -1) (A2)
e e

where R () is the autocorrelation function corresponding to S (f', andx x

G (s, I,) is the generating function defined by Cox and evaluated by him as
e

* [3, eq. (3.2.6)]

1 2 1- F(s)
G (s, -1) =-- (A3)

e s 2 1 F(s)
3s

63
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Using (A2) and (A3) in (Al) and doing the integrals by residue theory gives

-2 2 i1- P()
y I ; ~7~ A4)

gI

Another expression for v follows from. (14'; viz.,

2 1
y -+2u (A5)

Equating (A4) and (AS) yields (1o).

The asymmetric case follows in much the same way using Cox's results

on alternating renewal processes [3, Sec. 7.4].

0
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